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ABSTRACT

A wind energy Ramp Tool and Metric (RT&M) has been developed out of recognition that during sig-

nificant ramp events (large changes in wind power Dp over short periods of time Dt) it is more difficult to

balance the electric load with power production than during quiescent periods between ramp events. A ramp-

specific metric is needed because standardmetrics do not give special consideration to ramp events and hence

may not provide an appropriate measure of model skill or skill improvement. This RT&M has three com-

ponents. The first identifies ramp events in the power time series. The second matches in time forecast and

observed ramps. The third determines a skill score of the forecast model. This is calculated from a utility

operator’s perspective, incorporates phase and duration errors in time as well as power amplitude errors, and

recognizes that up and down ramps have different impacts on grid operation. The RT&M integrates skill

over a matrix of ramp events of varying amplitudes and durations.

1. Introduction

One challenge in integrating weather-dependent re-

newable energy onto the electric grid is the temporal

variability of the wind or solar resource. For wind, this

variability is amplified by a wind turbine’s nonlinear

power curve that translates wind speed into power,

creating large variations of wind energy production over

short periods of time. Figure 1 (top panel) displays the

time series of wind speed measured on a tall tower at

80m above ground level (AGL), and the resulting wind

power (bottom panel) produced by a turbine using a

standard International Electrotechnical Commission (IEC)

class 2 (International Electrotechnical Commission 2007)

turbine power curve (center panel). These data were

collected in South Dakota, a region featuring a large

amount of wind energy production, where the class 2

turbine is the most common type of wind turbine

deployed.

The wind power production in Fig. 1 has extended

periods of time with either zero power production (for

speeds below the turbine’s cut-in speed, 3m s21) or

near 100% of its capacity for high speeds (between 13

and 25m s21), with frequent jumps between small and

large power values. These jumps, or ramp events, can

be large because of the wind power increasing ap-

proximately as the cube of the wind speed in the

middle portion of the turbine’s power curve. Ramp
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events are important in real-time grid operations. If

large changes in wind power production occur, grid

operators must keep the grid in balance by making

equally large and abrupt changes in conventional en-

ergy generation. Large and sudden changes in con-

ventional generation can be costly and problematic

(Bradford et al. 2010; Francis 2008), especially if the

changes are not forecast accurately, both in terms of

their amplitude and timing.

Standard metrics (e.g., mean absolute error and root-

mean-square error) may not be well suited for wind

energy forecast evaluation because wind power pro-

duction can be near constant for considerable periods of

time, especially near 100% or 0%; it is the periods of

rapid transition between those two states that are most

challenging for grid balancing. Therefore, a wind ramp

metric can provide a useful statistical measure of the

accuracy of the model at forecasting ramp events by

weighting the model agreement for these events more

than during periods of near-constant power. A ramp

metric can be used to compare the skill of two models at

forecasting ramp events, or for documenting progress in

improving a given model. It could also be used to ana-

lyze the climatology of wind ramp events (i.e., seasonal

means or interannual variations) from observations

or models.

The identification and forecast evaluation of ramp

events has similarities and differences with other mete-

orological phenomena, such as precipitation [rate of

change; Hamill (2014)], aviation forecasting [timing;

Isaac et al. (2014); Jacobs and Maat (2005); Wong et al.

(2013)], air quality indices and severe convection (am-

plitude), and floods or droughts (direction of change). In

addition, the response of a grid operator to a down ramp

may be different than for an up ramp as curtailing output

for up-ramp events may be easier than quickly bringing

FIG. 1. (top) Time series of 80m AGL wind speed (m s21) and (bottom) equivalent nor-

malized capacity power using (center) an IEC2 wind power curve. Data from the SDSU FAH

tall tower for the 9-day period, 7–15 Jan 2012.
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on additional generation for down ramps. The combi-

nation of rate of change, timing, and the directionality of

ramp events makes for a unique forecasting problem.

For an agency such as NOAA, the Ramp Tool and

Metric (hereafter referred to as RT&M) can be useful

for determining how potential changes to research or

operational weather prediction models will impact users

in the wind energy industry.

Despite the importance of ramp events for renew-

able energy, there is no commonly accepted defini-

tion of a ramp event, nor is a single strict threshold

possible, because the threshold at which a ramp be-

comes important will vary from user to user, and from

situation to situation (e.g., Zack et al. 2011). In this

study we aim to develop a ramp tool that has the

flexibility to be helpful for a variety of users and that

can easily be modified or tuned to be valuable in a

variety of situations. For models, the RT&M is most

applicable as a diagnostic tool, for evaluating the skill

of a long time series of forecasts, and was not de-

signed or intended to be used for making real-time

decisions.

The RT&M described here has three components.

The first is the identification of ramp events in a time

series of power data, for which several different

methodologies are employed and compared. The sec-

ond component of the RT&M matches observed ramp

events with those predicted by a forecast model. If

ramp events are defined such that they are rare events,

matching is relatively simple. However, when the

definition is relaxed so that ramp events become more

frequent, matching events can be more difficult

(Wandishin et al. 2014). The final component of the

RT&M is a methodology for scoring the ability of a

model to forecast ramp events. We develop a scoring

metric that accounts for phase, duration, and ampli-

tude errors in the forecast, and differentiates between

the impacts of up- and down-ramp events. The par-

ticular scoring rules that we use are intended to reflect

the perspective of a grid operator; however, the metric

itself is flexible so that it could be easily modified to

reflect the needs of other users. To test the RT&M, we

used the 13-km horizontal resolution National Oce-

anic and Atmospheric Administration/Earth System

Research Laboratory (NOAA/ESRL) Rapid Refresh

(RAP) model and tall-tower anemometer observations

that were collected during the Wind Forecast Improve-

ment Project (WFIP), which took place in the U.S.

Great Plains during 2011–12 (Wilczak et al. 2014, 2015).

The RT&M results are applied to data collected over

9 days (7–15 January 2012) from a set of four 80-m-tall

towers spanning an ;100km 3 100km area, and to

forecasts from the RAP model at the same locations.

TheRT&M is available online (http://www.esrl.noaa.gov/

psd/products/ramp_tool/).1

This paper is organized as follows. Section 2 presents

three different methods for defining ramp events and

compares their results. Section 3 discusses the issues

related to ramp matching. Forecast scoring and model

evaluation procedures are presented for one ramp def-

inition in section 4. The forecast skill score methodology

is then extended for a range of ramp definitions in sec-

tion 5. Section 6 provides a summary and discussion. In

the appendix we discuss rules for applying a bonus to the

model skill when excess energy production can be re-

duced through wind plant curtailment.

2. Ramp identification

As mentioned, there is no absolute definition of a

ramp as the definition will depend on the particular

application, and the application will change from user to

user (Freedman et al. 2008). Also, users may require mul-

tiple definitions of ramps to be operative simultaneously.

For example, if a ramp event has a 60% capacity change in

generation over a 4-h period, it could inform a utility that a

certain type of unit needs to be brought online. However, if

within that 4-h period there is an embedded ramp with a

30%of capacity change in only 15min, then a different type

of unit may need to be brought online for that 15-min pe-

riod within the 4-h duration ramp. A ramp metric must

address a matrix of time and amplitude scales simulta-

neously to give a robust measure of model skill.

The type of power time series used in this tool may

differ depending on the user (i.e., for a wind plant op-

erator interested in forecast skill for a single plant or

turbine, the time series considered would be the power

production from that plant or turbine; for a grid opera-

tor concerned with the aggregate power generated by

wind and solar over their entire balancing area, the time

series to be considered would be the aggregate power).

We assume that the time series in either case is the basis

upon which operational decisions are made, so there is

no reason to filter or modify the time series for the

1 The RT&M is coded inMatlab, and users can download the main

code, functions and instructions, and the data used for this study to test

theRT&M,before running it on their owndatasets.When theRT&M

is run, a GUI opens and the user can choose several options, some of

whichwill be introduced in the subsequent narrative of the paper, and

the others are explained in a readme file, downloadable with the

RT&M. We also created an executable version of the code for users

that do not have Matlab. In this case they will not be able to modify

the Matlab code, but can still use the GUI. When a user runs the

RT&M, he or she can select whether the input datawill bewind speed

or power, according to what type of data are available.

AUGUST 2016 B IANCO ET AL . 1139

http://www.esrl.noaa.gov/psd/products/ramp_tool/
http://www.esrl.noaa.gov/psd/products/ramp_tool/


analysis of ramp events. Data compression routines such

as the swinging door algorithm (Bristol 1990; Florita

et al. 2013; Zhang et al. 2014) reduce a time series to a

shorter series of linear segments, and smaller changes in

power are ignored as noise with the effect that the fil-

tered time series will not contain the full range of power

variations originally present. Also, although we do not

apply any bias correction to the model output, it is

possible for a user to apply postprocessing techniques

before inputting their data into the RT&M.

Three ramp identification methods are presented in

this section. Each is tested on 9 days of observations

from four South Dakota State University (SDSU)

80-m-tall towers [Faith (FAH): latitude 45.05398,
longitude2102.26308, altitude 797m; Long Valley (LVL):

latitude 43.43318, longitude 2101.55448, altitude 944 m;

Lowry (LWY): latitude 45.27728, longitude 299.98618,
altitude 663m; and Reliance (REL): latitude 43.96818,
longitude 99.59448, altitude 628 m] and on forecasts for

the same location.

Forecasts were generated by the hourly updated RAP

model (http://rapidrefresh.noaa.gov). For comparison

purposes the model forecast values at the tower location

were determined through a horizontal parabolic in-

terpolation of the 16 model grid points surrounding the

tower location, followed by linear vertical interpolation

of the model wind profiles to the tower instrument

height. The RAP model provided output at 15-min in-

tervals, while the SDSU tower data were available as

10-min averages. Time interpolation is discussed below.

The first step of the ramp identification process is to

generate equal-length time series of model forecast and

observational wind speed data. For this we take two

different approaches that we will refer to as the stitching

method and the independent forecast run method.

For the stitchingmethodwe create a time series ofmodel

forecasts for a particular forecast horizon. First, consider

the simple case where the dataset consists of hourly model

output, hourly observations, and model forecasts that are

initialized on an hourly basis. A time series of forecasts

for a fixed forecast horizon (say forecast hour 3) is created

by concatenating all 3-h forecasts over a length of time t,

where t is greater than the maximum length forecast (15h

for the RAP), and equal in length to the considered ob-

served time series (here, t is 9 days, or 216h).

The WFIP observed wind speeds have 10-min reso-

lution while the model output has 15-min granularity,

and the model initialization cycle is hourly. To make use

of the high temporal resolution data for detecting ramps,

the process described above is modified by extracting

the four sequential 15-min forecasts that begin at a given

forecast horizon hour, and then concatenating these

groups of four forecasts. This time series of 15-min

forecasts of similar forecast horizon values is then line-

arly interpolated to the 10-min intervals of the obser-

vations, and both time series are converted into power

using the IEC2 turbine power curve.

For the independent forecast runs method we proceed

using sets of individual forecast runs, not concatenated,

in our case each with a length of 15 h, and to compare

each individual forecast run against the corresponding

observational time series. The advantage of this ap-

proach is that it does not have the potential to create

artificial ramps through the stitching process, while it has

the disadvantage of increasing the relative number of

occurrences of ramps that are terminated at the start and

end of each forecast run, as well as other disadvantages

that will be discussed later.

We include both of these approaches in the RT&M,

allowing the user [through the graphical user interface

(GUI)] to choose the one that best addresses their

analysis needs.

For both the stitching method and the independent

forecast runs method, ramps are then identified within the

two corresponding model and observational time series

using one of the ramp detectionmethods described below.

a. Fixed-time interval method

Various methods for defining ramp events have been

proposed (Cutler et al. 2007; Greaves et al. 2009;

Kamath 2010; Zack et al. 2010; Bossavy et al. 2010;

Ferreira et al. 2011), and the methods that we employ

include aspects of these earlier studies. Ramps of dif-

ferent sign are recorded separately, so at the beginning

two identical time series of logical ‘‘no ramp’’ values are

initialized. The first of these time series will record only

‘‘up’’ events and the second only ‘‘down’’ events. The

first ramp identification method, referred to as the fixed-

time interval method, uses a sliding time window of

lengthWL, over which wemeasure the change in power.

This method tests if the difference in power Dp5
(ps 2 pe) between the starting and ending points in the

time window WL equals or exceeds a threshold value

DpRD, where DpRD is the ramp definition threshold, and

ps and pe are the power values at the starting and ending

points in the time window, respectively. If the threshold

criterion is met, a ramp exists. If a ramp exists and

ps , pe, the event is an up ramp; if ps . pe, it is a down

ramp. If an up event is found in the windowWL, then all

points of the up time series within this window are changed

from no ramp to up ramps, and if a down event is found in

the window WL, then all points of the down time series

within this window are changed to down ramps. Once a

value is set as an up or down ramp, it cannot be changed

during the rest of the process. The sliding window moves

forward one time step, 10min, and the process is repeated

1140 WEATHER AND FORECAST ING VOLUME 31

http://rapidrefresh.noaa.gov


until the end of the time series is reached.At the end of the

process each point in the up time series will bemarked as a

no ramp or an up ramp, and each point in the down time

series will be marked as a no ramp or a down ramp. Any

contiguous time steps marked as being part of up events

are concatenated into a single up event, and the same is

done for the time series of down events. The ramp event

can be longer than the window length WL, but each point

in the event belongs to a window of length WL that sat-

isfies the criterion jDpj$DpRD.

Each concatenated ramp event is defined by its center

time Ct, temporal duration Dt, and total power change

Dp5 (p0
s 2 p0

e), where p0
s and p0

e are the power values at

the start and end, respectively, of the concatenated ramp

event. The schematic power time series in Fig. 2 shows a

series of ramp events that would be detected by the

fixed-time interval method.

Although appealing because of its simplicity, this

method has the possible drawbacks that 1) the selected

ramp events may not intuitively look like ramps, since

larger values of Dp can occur within the ramp than those

defined by its end points, and 2) two ramp events of

opposite direction can be overlapping in time. These

overlapping events could be truncated; however, since

the fixed-time interval method is frequently used with-

out truncation (Kamath 2010), these overlapping events

are allowed to remain. The truncation of overlapping

events will be implemented in method 3.

An example of ramp identification using the fixed-

time interval method on observed and stitched modeled

data (for the model initialization time, hour 0) is dis-

played in Fig. 3 for the 9 days of aggregate power data

from the four SDSU towers.2

Using a ramp definition of a power change greater

than 40% over a nominal 2-h period, seven up ramps

(shown in red) and two down ramps (in green) are found

through the time series of the observations. In contrast,

due to the smoothness of the forecasted time series of

power, the model finds only four up and two down

ramps. Since Fig. 3 shows the time series of the aggre-

gate power, the changes in power are smoother that

those we would see if we considered the time series of

the power for one tower only. For this reason, in this

example there are no overlapping points of opposite-

signed ramps.3

b. Minimum–maximum method

The next approach, referred to as the minimum–

maximum (min–max) method, avoids the two prob-

lems previously noted for the fixed-time interval

method. This technique finds the maximum amplitude

change in power Dp5 (pmax 2pmin) within a sliding

window of length WL, where pmax and pmin are the

maximum and minimum power values within that win-

dow. If this change in power amplitude meets the cri-

terion Dp$DpRD, where DpRD is the ramp definition

threshold, then a ramp event occurs. If more than one

pair of points within the window meets the threshold

criterion, only the shortest time Dt is used.
The initial ramp duration is determined by the times

tmin and tmax that correspond to pmin and pmax, so

Dt5 jtmin 2 tmaxj#WL. If tmin , tmax, the event is an up

ramp; otherwise, it is a down ramp. All points within the

interval Dt are marked as up or down, and separate time

series of both all up events and all down events are re-

corded. The sliding window moves forward one time

step, 10min, and the process is repeated until the end of

the time series is reached. Any contiguous time steps

marked as being part of up events are concatenated

into a single up event, and the same is done for the

down events.

In these cases the ramps can have a duration Dt
greater or smaller than WL. The magnitudes and start/

end times for all up and all down ramps are then stored

for the entire time series. Given the use of the min–max

values, ramps of opposite signs cannot overlap, although

the end point of one event may be the starting point of

an opposite-signed event.

Figure 4 shows the same schematic power time series

as in Fig. 2, but ramp events as detected by the min–max

method are displayed. Now the identified ramp events

look more intuitive, and more ramp events can be found

FIG. 2. Ramps identified by the fixed-time interval method (up

ramps, solid; down ramps, dashed line) for a window length WL

and a ramp threshold DpRD.

2When a user runs the RT&M using the downloadable GUI, he

or she can choose whether to run the RT&M over individual sites

and then average the statistics, or to run the RT&M on the

aggregated sites.

3When a user runs the RT&M using the downloadable GUI,

overlapping points will be shown with blue squares.
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in general as the selection of minimum and maximum

power within WL shortens the duration of the event.

The min–max method on the same aggregate of ob-

served and modeled data as in Fig. 3 (not shown) has

generally similar results, finding seven up ramps and

three down ramps in the time series of the observations

and four up and two down ramps in the model

simulation.

c. Explicit derivative method

The third method that we consider is referred to as the

explicit derivative method. In this context, ‘‘explicit’’

means all points within the window WL are used to

define a derivative and therefore the ramp. First, a

smoothed time derivative of the power ›p/›t is defined

as the slope of a linear least squares fit to the power

over a time window WL. Next, if j›p/›tj $ DpRD/WL, a

ramp exists; if ›p/›t. 0, it is an up ramp, and if ›p/›t, 0,

it is a down ramp. The beginning of an up-ramp event is

found by searching for a minimum in power over the

interval 1/2WL earlier in time than the first point where

the derivative threshold is met, since those points were

included in the derivative calculation. The end of an up

ramp is found by searching for the maximum in power

that occurs in the interval 1/2WL after the last point of

the initial derivative ramp. Similar tests are done for the

ends of a down ramp. As for the fixed-time interval

method, with the explicit derivative method it is possible

for two ramps of opposite signs to be partially over-

lapping in time. To accentuate differences between

these two methods, we modify the explicit derivative

results to truncate ramps that overlap. In the period of

overlap of a down ramp followed by an up ramp, the

minimum value of power is chosen as the end of the

down ramp and the start of the new up ramp. If more

than one occurrence of the sameminimum value occurs,

then the minimum closest to the down ramp is chosen as

its end point, and the minimum closest to the up ramp is

chosen as its beginning. If the period of overlap consists

of an up ramp followed by a down ramp, the maximum

FIG. 3. (top) Time series of 10-min normalized aggregate power from anemometer mea-

surements on the four SDSU towers and ramp events identified using the fixed-time interval

method (using a 40% power change threshold over 2 h). (bottom) As in the top panel, but for

the RAP model time series of power. Up ramps are in red and down ramps are in green. The

numbers of ramps found in each time series are shown on the right.

FIG. 4. Ramps identified by the min–max method for a window

length WL and a ramp threshold DpRD.
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value of power is searched. As in the other twomethods,

any contiguous time steps marked as being part of ramp

events of the same sign are concatenated into a single

event, so that the ramp event Dt can be longer or shorter

than the window length WL. Figure 5 displays a sche-

matic time series of power (top panel) and the power

derivative (bottom panel), and indicates ramps that are

selected by this method.

Employing the explicit derivative method on the same

aggregate of observed and modeled data in Fig. 3 (not

shown) yields five up ramps and three down ramps in the

time series of the observations and seven up ramps and

two down ramps in the model simulation.

3. Matching of forecast and observed ramps

The next step is to develop a methodology for

matching the observed andmodeled events. The general

philosophy we use is to match events that are closest in

time; if multiple events have the same time separation,

those with the closest ramp rate are matched. The inputs

to the matching algorithm are the sequential list of ramp

events over a time period t from the observations and

forecasts, each defined by their duration of event (Dtf
and Dto), power change (Dpf and Dpo), and their center

times (Ctf and Cto), where the subscript f indicates the

model forecast value and o the observed value. The

number of events in the two time series in general will

not be equal. Using these inputs, a matrix of dimension

Nf 3 No is created, where Nf and No are the number of

forecast and observed ramps, with the matrix populated

by the differences in center times (jCtf 2Ctoj) for each
combination of forecast and observed ramp events. A

second matrix consists of the difference in the power

ramp rate (jDpf /Dtf 2Dpo/Dtoj) between every pair of

forecast and observed events, no matter what their time

separation.

The matrix of differences in center times is then

searched for the minimum value(s), corresponding to

the model ramps that are closest in time to the observed.

If this minimum value is larger than WL, then the event

is unmatched. Frequently, multiple events with the same

minimum timing error will be found, because of a lim-

ited number of time shifts possible for the discrete

10-min sample dataset. If more than oneminimum exists,

all of the minima are evaluated for instances when one

model ramp is paired with two equally spaced (pre-

ceding and following) observed ramps. If the model

value is paired with only one observation, these two

events are matched, and then eliminated from any fur-

ther searching. If the model ramp is paired with two

observed events at the current time-shift minima, the

choice of which one is matched with the model event is

made based on the Dp/Dtmatrix, and the observed ramp

with the smaller value in the ‘‘difference in power ramp

rate’’ matrix is selected as the match. These matched

modeled and observed ramp events are removed from

both matrices, and the search for a minimum in the time

shift is repeated. This process of searching through all

model ramps is repeated until either all ramp events are

matched or are determined to be unmatched (up/null or

down/null events).

4. Forecast skill scoring methodology for a single
ramp definition

The ramp identification and ramp matching pro-

cedures result in time series of matched pairs of forecast

and observed ramps. Using this time series of events, a

forecast score is determined by comparing the forecast

and observed characteristics of each event. The ramp

skill score accounts for forecast ramps matched to ob-

served ramps, forecast ramps not matched with ob-

served ramps, and observed ramps not matched with

forecast ramps. The skill score incorporates phase, am-

plitude, and duration errors, and recognizes that up- and

down-ramp events can have different impacts on grid

operations. Also, the skill score is designed so that a set

of random forecasts will have near-zero skill, as we

FIG. 5. (top) Ramps found by the explicit derivative method for

a value of the smoothed derivative threshold given by DpRD and

window length WL. (bottom) The smoothed power derivative

corresponding to the power data in the top panel. The dashed lines

indicate the smoothed derivative thresholds defining up and

down ramps.
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verified by testing the RT&M on a randomly produced

forecast. A negative score indicates the model is worse

than random, and a positive score indicates the model

has skill.

The first step is to classify the different types of ramp

scenarios possible (Table 1). This is similar to a 3 3 3

contingency table (Wilks 2006) consisting of up, down,

and null events, except that the null/null case is not

considered and does not affect the skill score.

An equation is formulated to compute the scores for

the nonnull scenarios (1, 3, 6, and 8) accounting for the

timing, amplitude, and duration of the forecast and

observed ramp difference. Nondimensional amplitude

a, timing t, and duration l parameters are defined, with

the score of an individual matched ramp event de-

pending on a combination of the correctness of these

parameters. For a perfect forecast the score reaches its

maximum value, while for a forecast miss, the score will

equal its minimum value. The score for these four

scenarios is

Score
#
5MaxDistScore

#
(a

#
t
#
l
#
)1/3

1MinDistScore
#
[12 (a

#
t
#
l
#
)1/3] , (1)

where the number sign (#) refers to the four nonnull ramp

event scenarios, and MaxDistScore# and MinDistScore#,

respectively, represent limits to the score for perfect or

missed forecasts, nominally 1, 0, or 21.

We develop values for a, t, and l, as well as for

MaxDistScore# and MinDistScore# for two separate

cases. The first is a simplified case (presented in this

section) in which up/up ramps and down/down ramps

are treated equally, and all unmatched events are given

zero skill. For this case the value of MinDistScore# will

always be zero. The second case (presented in the ap-

pendix) is more complex and contains asymmetries,

where up/up ramps and down/down ramps are not

treated equally and unmatched events can have nonzero

skill. For this case the value of MinDistScore# can be

different from zero. This case will be used when the user

wants to take into account the possibility of curtailing

wind production, which can result in forecast errors of

different signs having different financial or grid re-

liability consequences.

The simplified scoring strategy uses the symmetric

range of scores in Table 2, with up/up and down/down

events having a score between11 and 0, tending to 0 as

the timing error approaches WL; down/up and up/down

events having score ranges between 0 and 21; and all

missed forecasts having zero skill.

The values ofMaxDistScore# in (1) are the scores with the

maximum distance from zero listed in Table 2. Thus, for an

up/up event (scenario 1) and a down/down event (scenario

8), MaxDistScore1,8 is11, while for an up/down event (sce-

nario 3) and a down/up event (scenario 6), MaxDistScore3,6
is21. The forecast timing and amplitude skill parameters t#,

a#, and l# are defined as the linear equations:
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where Dtmin 5WL for the fixed-time interval method

because it defines the ramp using the points at the ex-

tremes of the window and Dtmin 5 10 min (the resolution

of the data) for the min–max and the explicit derivative

methods because for these methods the duration of the

ramp can be smaller than the window length.

For all scenarios, the timing skill [(2)] falls in the range

0# t# 1, with a value of 1 when there is no timing error,

decreasing linearly to zerowhen the timingerror reachesWL.

For scenarios 1 and 8 the best skill is obtained when

the forecast and observed ramps have identical power

amplitudes (a1,8 5 1), durations (l1,8 5 1), and no phase

error for their center times (t1,8 5 1). For this perfect

forecast the score in (1) is equal to MaxDistScore1,85 1.

The values of a1,8, l1,8, and t1,8 decrease toward zero as

the forecast becomes less perfect and the score in (1)

approaches MinDistScore1,8 5 0.

TABLE 1. Scenario definitions for matched and unmatched

ramp events.

Observed

Model Up Null Down

Up 1 2 3

Null 4 — 5

Down 6 7 8

TABLE 2. Range of scores possible for all eight event scenarios for

the simplified, symmetric case.

Observed

Model Up Null Down

Up From 11.0 to 0.0 0.0 From 21.0 to 0.0

Null 0.0 — 0.0

Down From 21.0 to 0.0 0.0 From 11.0 to 0.0
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For scenarios 3 and 6 the worst case occurs when the

forecast and observed ramps have identical (and opposite)

maximum power amplitudes (Dpf 561, Dpo 5 71, so

that a3,6 5 1); the ramps are very sharp, approaching the

resolution of the data (in which case l3,6 5 1); and there is

no phase error for their center times (t3,6 5 1). In this case

the score in (1) is equal toMaxDistScore3,6 521. As the

amplitude of the ramps in these scenarios become

smaller, a3,6 in (4) will decrease such that a3,6 5DpRD

at its minimum (with a3,6 / 0 as DpRD / 0). Also, l3,6

in (6) will decrease as Dtf and Dto become longer, and

the score in (1) approaches MinDistScore3,6 (in this

case equal to 0) since the utility operator has more

time to adjust for the wrong forecast.

5. Forecast skill scoring: Matrix of skill values

The ramp metric developed above applies to ramps

defined by a single power amplitude threshold and

window length. Ideally, one would like to know which

model is best for a range of power thresholds and win-

dow lengths and then to average the model’s skill over

this range of values. For this reason, we consider a ma-

trix of ramp skills schematically illustrated in Fig. 6.

For this study four different time windows (30, 60, 120,

and 180min) and five different power thresholds (30%,

40%, 50%, 60%, and 70%) have been chosen.4 The

ramp matrix has been designed so that each matrix ele-

ment answers the question, does a ramp event of a par-

ticular duration exceed a DpRD threshold? Therefore,

each matrix element contains the cumulative information

for all ramps greater than that threshold. For example, a

70% DpRD over 2h also fulfills the requirement of 60%

DpRD, or lower, over the same WL; therefore, this ramp

will be taken into account in more than one matrix bin.

Skill scores as defined in section 4 for each value of

power threshold and window length are calculated and

placed into each matrix element. Skill scores using ex-

treme ramp definitions (largest power thresholds and

shortest window lengths) are placed in the top-left cor-

ner of the matrix. Skill scores for more frequently oc-

curring and weaker ramp events (lower power thresholds

and longer window lengths) will be placed in the bottom-

right corner of the matrix.

a. Results from 9 days of observation from four
SDSU tall towers

To illustrate how the RT&M can be used to measure

the skill of a model forecasting ramp events, we applied

it to 9 days’ worth of observations from the four SDSU

tall towers introduced in section 2 and corresponding

forecasts from the RAP model at the same locations.

Recognizing that a single 9-day period is insufficient to

definitively assess the skill of this model, the intent of

this study is limited to describing the RT&M and how it

can be used to measure model skill at forecasting ramp

events on a real observational dataset. A future study is

under way testing the RT&M on a larger observational

dataset, comparing different models, and comparing

similar models run at different spatial resolutions and

with different model output frequencies.

For this exercise we examined the average of the

statistical results for each tower site, instead of the ag-

gregate of four towers, although as stated earlier the

RT&M provides the option of aggregating the results

FIG. 6. Schematic diagram of a ramp matrix. Extreme ramps are

in the top-left corner, and low-amplitude ramps of longer duration

are in the bottom-right corner.

4When a user runs the RT&M using the downloadable GUI, he

or she could also choose different time windows and power

thresholds by modifying the Matlab code, but the minimum pos-

sible time window that can be chosen is equal to 2 times the reso-

lution of the data, in our case the minimum time window would be

equal to 2 3 10min 5 20min.
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according to the user needs. We also set the matrix of

scores to be symmetric (as in Table 2). First, we present

results obtained using the RT&M stitching method to

compare the RAP model to observations.

Figure 7 displays the number of occurrences of ramp

events found using the min–max identification method,

as observed from the tall towers (left panel), and for the

RAP model (forecast hour 0, initialization time, center

panel; forecast hour 6, right panel), for the previously

specified range of ramp power thresholds and window

lengths. Relatively few extreme ramp events are found

(top-left corner of each panel) while many small-amplitude

and long-duration ramps are found (bottom-right corner of

each panel). A similar number of events is found at forecast

hour 6 compared to the initialization time. In contrast, the

number of occurrences in the observations is larger. This is

because at 13-km resolution the model has considerably

smoother fields than the observed point location power

time series.

Skill score matrices for the RAP model simulations

using the fixed-time interval ramp definition method are

shown in Fig. 8 for the initialization time and forecast

hours 3, 6, and 14. The skill is larger for longer window

lengths compared to the shorter windows. The skill is

greatest at the initialization time, and slowly decays with

forecast length. Skill scores for the other methods look

qualitatively similar (not shown).

b. Weighting matrix

Using the methodology presented above, a perfect

forecast of a 30% power capacity ramp over 2 h and one

of 70% over 30min may both have forecast skills of 1.0,

yet forecasting the larger ramp will be more important

and should have more value than the smaller ramp.

In place of averaging the ramp skill scores in all of the

score matrix elements equally, a weighting function can

be applied before averaging the score matrix that ac-

counts for the fact that the skill scores for the more ex-

treme events will likely have a greater impact on grid

operations than theweaker ramps. Theweightingmatrix

that we have used starts with a weight of 1.0 in the top-

left corner of the matrix in Fig. 6 (most extreme ramps)

and decreases the weight by 10% for each 10% change

in the ramp power threshold and each increment in

window length.5

The average score across the entire matrix is shown in

Fig. 9 for the three ramp definition methods, using both

FIG. 7. Number of occurrences of ramp events per day per tower that fall into each matrix bin during the 9 days of analysis using the

stitching method and using the min–max method, for (left) the tall-tower observations, and for (center) the forecast initialization time

(hour 0) and (right) forecast hour 6 of the RAP model. The ramp definition power threshold ranges from 30% to 70%, and the window

length ranges from 30 to 180min.

5When a user runs the RT&M using the downloadable GUI, he

or she can choose to run the RT&Maveraging the ramp skill scores

in all of the score matrix elements equally, or apply the weighting

function introduced here to weight the extreme events (or create

their own weighting matrix, according to his or her needs, by

modifying the Matlab code itself).
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an equal weighting of all the matrix elements (top panel),

and when using the weighting matrix (bottom panel). The

unweighted averaged skill score is greater than the

weighted skill score, because the model has less skill at

forecasting the most extreme ramps. Although the 9-day

period used in this study is not long enough to claim de-

finitive results, we notice that for this exercise the skill

score of the RAP model is positive for all forecast hours

and methods, decreasing with forecast length. We also

note that model forecast skill tends to be greatest when

using the explicit derivative method, which may be due to

the fact that thismethod appliesmore temporal smoothing

to the data then does, say, the min–max method. The

choice of method will clearly depend on the user’s specific

forecast needs.

A breakdown of the ramp events into the eight dif-

ferent scenarios using the three ramp identification

methods (not shown) shows the largest number of events

by far occurs for the two model null event scenarios (4 and

5). This ismost likely due to the fact that observational data

have much more temporal variability compared to the

model time series. For this reason, as noticed in section 2,

fewer ramp events are found in the model time series and

many observed ramps have no match in the model time

series. The next most common events are scenario 1 (up/

up), scenario 2 (up/null), scenario 8 (down/down), and

scenario 7 (down/null), but with much lower frequencies

than scenarios 4 and 5. The least common are scenarios 3

(up/down) and 6 (down/up), the worst scenarios possible.

The ramp skill scores can also be broken down into

each scenario category (not shown). The positive

contribution to skill score comes from scenarios 1 and 8,

when the forecast accurately predicts up ramps and

down ramps when they are observed. Scenarios 3 and 6

(ramp forecasts with the sign opposite than that ob-

served) have a negative contribution smaller than the

positive contribution of scenarios 1 and 8. Scenarios 2, 7,

4, and 5 (null events) have no net effect as the score for

these scenarios is set equal to zero (see Table 2) for this

exercise.

Also, the skill of a model at forecasting observed up-

ramp events versus down-ramp events can be tested

separately with this same RT&M, simply rerunning it

first only using nonzero values for scenarios 1 and 6 in

Table 2 (observed up ramps) and the second time only

using nonzero values for scenarios 3 and 8 in Table 2

(observed down ramps). For this dataset this compari-

son is presented in Fig. 10, where the dashed lines are

used for up events and the solid lines represent down

ramps. The model has greater skill at forecasting ob-

served up-ramp events compared to down-ramp events.

Again the skill of the model at forecasting both up- and

down-ramp events decreases with forecast length, but

stays positive for all forecast hours.

Finally, in Fig. 11 we present the same results pre-

sented in Fig. 9 (bottom) and Fig. 10, but obtained by the

RT&M independent forecast runs method to compare

the model to the observations. In this case, the observed

andmodel time series are shorter and equal to the length

of the model forecast (equal to 15h in the case of the

RAP model used in this study). During a period of

9 days in January 2012, there are 216 (24 times 9) such

FIG. 8. Matrix of skill scores using the stitching method for the fixed-time interval method for the RAP model forecasts for the

initialization time and forecast hours 3, 6, and 14.
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time series that allow comparison of the observed and

model data for ramp identification. Ramps are de-

termined and matched between each pair of time series

in the same way they were determined and matched

using the ‘‘stitching method’’ presented before, but

when we measure the skill of the model for each par-

ticular ramp, we add that skill to the matrix of skills for

the same forecast hour during which the central time of

the model ramp occurs (in the appropriate matrix ele-

ment, relative to that particular ramp definition). In this

way we can preserve the information on how the sta-

tistics vary as a function of the forecast horizon. A dis-

advantage of this method is that the beginning and

ending forecast hours will suffer from truncated ramps

that potentially begin before the start of the forecast

cycle or end after forecast hour 15. For instance, there

FIG. 9. Skill score results using the stitching method for the fixed-time ramp identification

method (red), the min–max ramp identification method (green), and the explicit derivative

ramp identification method (blue) with (top) equal weighting of all matrix elements and

(bottom) when using the weighting matrix.

FIG. 10. Skill score results using the stitchingmethod for the fixed-time intervalmethod (red),

themin–maxmethod (green), and the explicit derivativemethod (blue) at forecasting observed

up-ramp (dashed lines) vs down-ramp (solid lines) events. In all curves the skill score is

computed using the weighting matrix.
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will be no ramps with central time at forecast hour 00:00,

so forecast hour 0 skill will only have skill coming from

ramps centered at 00:15, 00:30, and 00:45. Moreover,

ramps centered at 00:15 will be limited in definition

(no ramps with Dt. 30min can be centered at 00:15,

because the initial time of these ramps would happen

before forecast hour 0000, which the model does not

have). For this reason the skill of the model at forecast

hour 0 will be less than what we were able to measure

when the stitching method was used. Similar limitations

will be true for forecast hour 1, as in this case there will

be ramps with central time at forecast hour 01:00, but

these will be limited in definition to those having a

Dt, 120min, because the initial time of the ramps with a

Dt. 120 min would be before forecast hour 00:00, which

again the model does not have. Similar considerations

are true for forecast hour 14 (for the model we used in

this study, or the last forecast hour of a model in gen-

eral). The number of disadvantaged forecast hours will

be a function of the ramp definitions chosen by the user.

When this second approach is run on the 9-day data-

set, we found that the statistics for forecast hours 2–13

are very similar to those found with the stitching method

(cf. Fig. 11 to Fig. 9, bottom panel, and to Fig. 10),

proving that the RT&M is very robust. As expected

from the considerations above, the skill of the RAP in

Fig. 11 (both panels) is less that what we had found

before in Fig. 9 (bottom) and Fig. 10 at forecast hours 0,

1, and 14. For this reason, Fig. 11 shows gray areas for

the forecast hours that suffer from the deficiencies de-

scribed above. Nevertheless, both of these approaches

are available in the RT&M, and the user can choose the

one that best addresses their analysis needs.

6. Summary and conclusions

A Ramp Tool and Metric was developed to test the

ability of a model to forecast ramp events for wind en-

ergy. Power forecasts were evaluated by converting tall-

tower observations and model forecast wind speeds to

normalized capacity power using a standard IEC2 power

curve. Two options are provided to the user to decide

how to compare the model to observations.

The RT&M has three components: it identifies wind

ramp events, matches forecast and observed ramps, and

calculates a skill score for the forecasts.

The skill score incorporates phase, duration, and am-

plitude errors. Since no single pair of changes in power

FIG. 11. (top) Skill score results using the independent forecast runs method for the fixed-

time ramp identification method (red), the min–max ramp identification method (green), and

the explicit derivative ramp identification method (blue). (bottom) Skill score results at

identifying up-ramp (dashed lines) vs down-ramp (solid lines) events. In all curves the skill

score is computed using the weighting matrix.
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and time thresholds may be representative, and some

users may use different ramp definitions for different

situations, the RT&M provides the option to integrate

the skill over a range of changes in power and time win-

dows. Although specific RT&M parameter values were

used in this study, the tool is flexible and can be modified

by users for their purposes. Also, a greater emphasis can

be given to the more extreme events using a weighting

matrix.

We tested the RT&M on 9 days’ worth of observa-

tions from a set of four SDSU tall towers located in

South Dakota, and used these data to illustrate how the

RT&M can be employed to evaluate the skill of a model

(RAP in this example) at forecasting ramp events. This

hourly updated model runs operationally over North

America at 13-km resolution, and was used during the

2011–12WFIP campaign. For the RT&M analysis, RAP

output at 15-min resolution was used, allowing us to

consider short-duration ramps. TheRAPmodel is found

to have positive skill decreasing with forecast length,

and greater skill at forecasting up-ramp events com-

pared to down-ramp events. We developed and de-

scribed three different methods for identifying ramp

events but at this stage of the analysis it is not yet clear

which one is best.

Since this RT&M is used to evaluate the skill of a

model when forecasting ramp events in a time series of

power data, in principle it could also be used on a time

series of power data generated by solar plants. In this

case the values of the time windows and power thresh-

olds should be changed according to the expected be-

havior of the power data produced by the solar plants.

This work is in our future plans. TheRT&M is publically

available online (http://www.esrl.noaa.gov/psd/products/

ramp_tool/).
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APPENDIX

Curtailment Bonus

The simplified scoring strategy presented in the main

body of the manuscript uses the symmetric range of

scores shown in Table 2. However, symmetric scoring

does not account for the fact that forecast errors of

different signs (underprediction versus overprediction

of power) may have different financial consequences. In

particular, if the observed wind power Po exceeds the

amount of power P̂ that the grid operator expects to

occur during the ramp event power (Po . P̂), the grid

operator has the opportunity to simply curtail the wind

production. On the other hand, when the actual wind

power produced is less than that expected (Po , P̂), the

grid operator could be forced to make a power purchase

on the spot market. In some markets curtailing wind

may be much cheaper than dealing with the opposite

case of making a power purchase on the spot market, so

that an underprediction does not carry the same cost as

an overprediction of the same magnitude. To account

for this asymmetry, we describe below the concept of a

curtailment bonus that can be incorporated into the

calculation of the ramp score for a subset of the scoring

TABLEA1. Scores for the four possible null scenarios when a bonus is applied to the situations that can be solved by curtailing wind energy

generation.

Scenario Model Observed Utility action Score

2 Up Null Fuel spot market purchase 0

4 Null Up Wind curtailment or cancellation of planned increase of fossil fuel units (0.1 3 bonusweight)

5 Null Down Fuel spot market purchase 0

7 Down Null Wind curtailment or cancellation of planned increase of fossil fuel units (0.1 3 bonusweight)

TABLE A2. Range of scores possible for all eight event scenarios for the case with bonuses.

Observed

Model Up Null Down

Up From 11.0 to (0.1 3 bonusweight) 0.0 From 21.0 to 0.0

Null (0.1 3 bonusweight) — 0.0

Down From 21.0 to (0.2 3 bonusweight) (0.1 3 bonusweight) From 11.0 to (0.1 3 bonusweight)
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scenarios. By ‘‘bonus’’ we do not imply that curtailment

is necessarily good, only that in some situations curtail-

ing wind can be less expensive than bringing up a fossil

fuel generator.

In general terms, the bonus should be proportional to

the integrated amount of wind that can be curtailed:

Bonus}

ðte
ts

(P
o
2 P̂) dt when P

o
. P̂ ,

where ts and te are appropriately defined start and end

times of the integration period. Rather than use the full

integral, we wish to define a simplified ramp bonus based

on the few parameters used to define a ramp: Ctf and

Cto, Dpf and Dpo, and Dtf and Dto.

Implicit in our curtailment analysis is the assumption

that the grid is always balanced at the start of a ramp event,

even if the model forecast is already in error at that point.

Therefore, for example, a forecast down ramp that has

been matched with an observed up ramp will always pro-

vide the opportunity for curtailment, even if the actual time

series of forecast power remains greater than the observed

power during the ramp event. That is, the grid operatorwill

have accounted for the initial error in the forecast, so that

the expected amount of power to be producedwill be offset

from the raw model power forecast. Since the tool only

analyzes ramp events, a second assumption that we make

to simplify the analysis is that a curtailment bonus will only

be applied for those time periods when either an observed

or forecast ramp is present.

FIG. A1. Schematic representation of the first situation when the bonus will be applied to the

model. The shaded area represents the amount of wind power production during an observed

ramp event that could be curtailed and that overlaps with a matched forecast ramp.

FIG. A2. Schematic representation of the second situation when the bonus will be applied to

the model.
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A feature of the curtailment bonus option is that the

user can choose the weight to give to this bonus through a

variable called bonusweight that ranges between 0 and 1

(with steps of 0.1), with 0 being equivalent to no bonus and

1 being the maximum.When a user runs the RT&Musing

the downloadable GUI, he or she can select what value to

assign to the bonusweight in the appropriate box.

For the null (unmatched) events, curtailment can oc-

cur for scenarios 7 and 4, when the total power observed

is greater than the forecast. However, even though for

these two null case scenarios there may be value in

curtailment, because these are missed events we still

wish for the model to have a skill score close to zero.

Therefore, for scenarios 7 and 4 we will multiply the

value of bonusweight by a small value (0.1), so that the

maximum score for these scenarios will never be greater

than this small value. The scoring strategy for the null

scenarios will then become as shown in Table A1.

Once we have assigned scores to the null scenarios, we

can complete the entire table again, but taking into

consideration that MinAmpScore1 of scenario 1 has to

converge to the sum of the scores in scenarios 2 and 4 (as

an observed and forecast up/up-ramp pair slide farther

apart from one another in time, when they reach the

window length WL, they will become an up/null pair

and a null/up pair, and the sum of these two scenarios

FIG. A3. Schematic representation of the third situation when the bonus will be applied to

the model.

FIG. A4. The t1,6,8 function with no bonus applied (thick blue line) and with the bonus (thin

colored lines).
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should match the up/up pair at that point), and similar

considerations can be repeated for MinAmpScore3
of scenario 3, MinAmpScore8 of scenario 8, and

MinAmpScore6 of scenario 6 as follows:

MinDistScore
1
/Score

2
1 Score

4
,

MinDistScore
3
/Score

2
1 Score

5
,

MinDistScore
8
/Score

7
1 Score

5
, and

MinDistScore
6
/Score

7
1 Score

4
.

The scoring strategy for the eight scenarios will then

become the one presented in Table A2.When the bonus

is applied, not only is the range of scores changed, but

the formulations are changed as explained below.

For the nonnull scenarios, bonuses will be applied in

three different situations:

1) The first situation when the bonus will be applied to

the model is in scenario 1, but only when the

following conditions are met:
d the central time of the forecast is later compared to

the central time of the observations (Ctf .Cto), and
d the power change of the forecast is less than the

power change of the observations (Dpf #Dpo), and
d the starting time of the forecast event happens

before the end time of the observed event [Ctf 2
(Dtf /2),Cto 1 (Dto/2)], so that we are sure there

is a time during the forecast event when the actual

wind power available is larger than the forecast,

and, consequently, curtailment is possible.We note

that it is possible for these criteria to not be met

even though two ramps are matched.

This situation is schematically presented in Fig. A1.

In this case the gray area is the time during which the

nonperfect forecast results in the actual wind power

supply available (blue curve) being greater than the

forecast power (red curve), and hence the amount

required to balance demand, which can be allevi-

ated by curtailing wind energy generation. From

this figure we can see that if the forecast starting time is

later compared to the final time of the observations,

there will not be a time during which the observations

are larger than the forecast and therefore the bonus

cannot be applied.

2) The second situation when the bonus will be applied

to the model is in scenario 8, but only when the

following conditions are met:
d the central time of the forecast is earlier compared

to the central time of the observations (Ctf ,Cto), and
d the power change of the forecast is less (more

negative) than the power change of the observa-

tions (Dpf #Dpo), and
d the final time of the forecast event happens after

the initial time of the observed event [Ctf 1
(Dtf /2).Cto 2 (Dto/2)], so that we are sure there

is a time during the forecast event when the

observations are larger than the forecast, and,

consequently, curtailment is possible.

FIG. A5. As in Fig. A4, but for the a1,8 function.
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This situation is schematically presented in Fig. A2.

In this case the gray area is again the time during which

the nonperfect forecast can be alleviated by curtailing

wind energy generation. Again, from this figure we can

see that if the forecast final time is instead earlier

compared to the initial time of the observations, there

will not be a time during which the observations are

larger than the forecast and the bonus cannot be

applied.

3) The third and last situation when the bonus will be

applied is in scenario 6, but only when the following

conditions are met:
d the central time of the forecast is earlier compared

to the central time of the observations (Ctf ,Cto), and
d the final time of the forecast event happens after

the initial time of the observed event [Ctf 1
(Dtf /2).Cto 2 (Dto/2)], or

d the central time of the forecast is late compared to

the central time of the observations (Ctf .Cto), and
d the initial time of the forecast event happens

before the end time of the observed event

[Ctf 2 (Dtf /2),Cto 1 (Dto/2)], so that we are sure

there is a time during the forecast event when the

observations are larger than the forecast, and,

consequently, curtailment is possible.

This situation is schematically presented in Fig. A3. In

this case the gray area is again the time during which the

nonperfect forecast can be alleviated by curtailing wind

energy generation. Again, from this figure we can see

that if the above conditions are not met, there will not

be a time during which we can be sure the observed

ramp event power is larger than the forecast and

therefore the bonus cannot be applied.

To assign the bonuses to the model in the nonnull sce-

narios and in the instances where curtailment is possible,

we need to modify the formulations for t1,6,8, a1,8, and a6.

The new formula for t1,6,8 will become

t
1,6,8

5

 
12

jCt
f
2Ct

o
j

WL
B

t1,6,8

!
,

with Bt1,6,8 5 (jCtf 2Ctoj/WL)bonusweight and bonus-

weight 5 0:0.1:1.

So,

t
1,6,8

with BONUS

5

2
412

 jCt
f
2Ct

o
j

WL

!(11bonusweight)
3
5 .

The t1,6,8 function is presented in Fig. A4, when a

value of WL5 180 min is chosen.

FIG. A6. As in Fig. A4, but for the a6 function.
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The new formula for a1,8 will become

a
1,8

5 (12 jDp
f
2Dp

o
jB

a1,8
),

with Ba1,8 5 jDpf 2Dpojbonusweight and bonusweight 5
0:0.1:1.

So,

a
1,8

with BONUS5 [12 jDp
f
2Dp

o
j(11bonusweight)] .

The a1,8 function is presented in Fig. A5 in the case of

DpRD 5 30%.

Finally, the new formula for a6 will become

a
6
5

 jDp
f
2Dp

o
j

2
B

a6

!
,

with Ba6
5 (jDpf 2Dpoj/2)bonusweight and bonusweight5

0:0.1:1.

So,

a
6
with BONUS5

2
4 jDpf

2Dp
o
j

2

!(11bonusweight)
3
5 .

The a6 function is presented in Fig. A6 in the case of

DpRD 5 30%.

Using a value of the bonusweight5 1, we repeated the

same analysis presented in the body of the manuscript,

when the stitching method is used to compare the model

to the observations. The average score across the entire

matrix is shown in the two panels of Fig. A7 for the three

ramp definition methods, using an equal weighting of all

the matrix elements and a value of bonusweight 5 0 in

the top panel (equivalent to the top panel in Fig. 9), and

bonusweight 5 1 in the bottom panel. We notice that

because of the use of the bonus in circumstances when

the nonperfect forecast results in wind curtailment, the

score of the model is larger in the bottom panel of

Fig. A7 compared to the top panel. The skill score of the

RAP model remains positive for all forecast hours and

for all three methods, and does decreases with forecast

length.
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